Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 913: 169335, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38103613

RESUMEN

Soil erosion on agricultural land is a major threat for food and raw materials production. It has become a major concern in rubber (Hevea brasiliensis) plantations introduced on sloping ground. Alternative agroecological crop management practices must be investigated. One aim of our study was to assess the ability of logging residues (i.e., trunks, branches, leaves and stumps of a clearcut plantation) and of legume cover (Pueraria phaseoloides) to mitigate N, P and K losses through runoff and soil detachment in a young rubber plantation. The other aim was to investigate the relationships of these nutrient losses with soil structure and soil macrofauna diversity. Runoff and soil loss were monitored for 3 years using 1-m2 plots under different practices as regards the management of logging residues and the use or not of a legume. The monitoring started when rubber trees were one-year-old. The planting row, where soil was bare, was the hotspot of soil erosion, with an average runoff of 832 mm y-1 and soil loss of 3.2 kg m-2 y-1. Sowing a legume in the inter-row reduced runoff and soil loss by 88 % and 98 % respectively, compared to bare soil. Spreading logging residues as well as growing a legume cover almost eliminated runoff and soil detachment (19 mm y-1 and 4 g m-2 y-1 respectively). Nutrient losses were negligible as long as the soil surface was covered by a legume crop, with or without logging residues. Total N loss from soil detachment ranged from 0.02 to 0.2 g m-2 y-1, for example. Spreading logging residues in the inter-rows significantly improved soil structure and soil macrofauna diversity compared to bare soil. Nutrient losses from runoff and soil detachment were negatively correlated with improved soil structure and soil macrofauna diversity. We recommend investigating alternative ways to manage planting rows.


Asunto(s)
Fabaceae , Hevea , Suelo/química , Goma , Agricultura , Verduras
2.
Plants (Basel) ; 12(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36840150

RESUMEN

We hypothesized that the nitrogen-fixing tree Acacia mangium could improve the growth and nitrogen nutrition of non-fixing tree species such as Eucalyptus. We measured the N-mineralization and respiration rates of soils sampled from plots covered with Acacia, Eucalyptus or native vegetation at two tropical sites (Itatinga in Brazil and Kissoko in the Congo) in the laboratory. We used a bioassay to assess N bioavailability to eucalypt seedlings grown with and without chemical fertilization for at least 6 months. At each site, Eucalyptus seedling growth and N bioavailability followed the same trends as the N-mineralization rates in soil samples. However, despite lower soil N-mineralization rates under Acacia in the Congo than in Brazil, Eucalyptus seedling growth and N bioavailability were much greater in the Congo, indicating that bioassays in pots are more accurate than N-mineralization rates when predicting the growth of eucalypt seedlings. Hence, in the Congo, planting Acacia mangium could be an attractive option to maintain the growth and N bioavailability of the non-fixing species Eucalyptus while decreasing chemical fertilization. Plant bioassays could help determine if the introduction of N2-fixing trees will improve the growth and mineral nutrition of non-fixing tree species in tropical planted forests.

3.
Sci Total Environ ; 816: 151526, 2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-34752871

RESUMEN

Soil health is defined as the soil's capacity to deliver ecosystem functions within environmental constraints. On tree plantations, clear-cutting and land preparation between two crop cycles cause severe physical disturbances to the soil and seriously deplete soil organic carbon and biodiversity. Rubber, one of the main tropical perennial crops worldwide, has a plantation life cycle of 25 to 40 years, with successive replanting cycles on the same plot. The aim of this study was to assess the effects of clear-cutting disturbance on three soil functions (carbon transformation, nutrient cycling and structure maintenance) and their restoration after the planting of the new rubber crop, in two contrasting soil situations (Arenosol and Ferralsol) in Côte d'Ivoire. In this 18-month diachronic study, we intensively measured soil functions under different scenarios as regards the management of logging residues and the use or not of a legume cover crop. We investigated the relationship between soil macrofauna diversity and soil heath. At both sites, clear-cutting and land preparation disturbed carbon transformation and nutrient cycling significantly and, to a lesser extent, structure maintenance function. When logging residues were applied, carbon transformation and structure maintenance functions were fully restored within 12 to 18 months after disturbance. By contrast, no restoration of nutrient cycling was observed over the study period. A legume cover crop mainly improved the restoration of carbon transformation. We found a strong relationship (P ≤ 0.001; R2 = 0.62-0.66) between soil macrofauna diversity and soil health. Our overall results were very similar at the two sites, despite their contrasting soil conditions. Keeping logging residues in the plots and sowing a legume in the inter-row at replanting accelerated the restoration of soil functions after major disturbance caused by clear-cutting and land preparation. Our results confirm the necessity of taking soil macrofauna diversity into account in the management of tropical perennial crops.


Asunto(s)
Goma , Suelo , Carbono , Côte d'Ivoire , Ecosistema
4.
Plant Cell Environ ; 44(9): 2938-2950, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34033133

RESUMEN

Fertilization is commonly used to increase growth in forest plantations, but it may also affect tree water relations and responses to drought. Here, we measured changes in biomass, transpiration, sapwood-to-leaf area ratio (As :Al ) and sap flow driving force (ΔΨ) during the 6-year rotation of tropical plantations of Eucalyptus grandis under controlled conditions for throughfall and potassium (K) fertilization. K fertilization increased final tree height by 8 m. Throughfall exclusion scarcely affected tree functioning because of deep soil water uptake. Tree growth increased in K-supplied plots and remained stable in K-depleted plots as tree height increased, while growth per unit leaf area increased in all plots. Stand transpiration and hydraulic conductance standardized per leaf area increased with height in K-depleted plots, but remained stable or decreased in K-supplied plots. Greater Al in K-supplied plots increased the hydraulic constraints on water use. This involved a direct mechanism through halved As :Al in K-supplied plots relative to K-depleted plots, and an indirect mechanism through deteriorated water status in K-supplied plots, which prevented the increase in ΔΨ with tree height. K fertilization in tropical plantations reduces the hydraulic compensation to growth, which could increase the risk of drought-induced dieback under climate change.


Asunto(s)
Eucalyptus/metabolismo , Fertilizantes , Agricultura Forestal/métodos , Potasio/farmacología , Árboles/metabolismo , Agua/metabolismo , Biomasa , Eucalyptus/efectos de los fármacos , Eucalyptus/fisiología , Hojas de la Planta/metabolismo , Transpiración de Plantas/efectos de los fármacos , Transpiración de Plantas/fisiología , Árboles/efectos de los fármacos , Árboles/fisiología , Xilema/metabolismo
6.
Sci Rep ; 10(1): 15703, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973312

RESUMEN

The plant-available pools of calcium, magnesium and potassium are assumed to be stored in the soil as exchangeable cations adsorbed on the cation exchange complex. In numerous forest ecosystems, despite very low plant-available pools, elevated forest productivities are sustained. We hypothesize that trees access nutrient sources in the soil that are currently unaccounted by conventional soil analysis methods. We carried out an isotopic dilution assay to quantify the plant-available pools of calcium, magnesium and potassium and trace the soil phases that support these pools in 143 individual soil samples covering 3 climatic zones and 5 different soil types. For 81%, 87% and 90% of the soil samples (respectively for Ca, Mg and K), the plant-available pools measured by isotopic dilution were greater than the conventional exchangeable pool. This additional pool is most likely supported by secondary non-crystalline mineral phases in interaction with soil organic matter and represents in many cases (respectively 43%, 27% and 47% of the soil samples) a substantial amount of plant-available nutrient cations (50% greater than the conventional exchangeable pools) that is likely to play an essential role in the biogeochemical functioning of forest ecosystems, in particular when the resources of Ca, Mg and K are low.

7.
Sci Total Environ ; 742: 140535, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32721724

RESUMEN

Many studies have shown that introducing N2-fixing trees (e.g. Acacia mangium) in eucalypt plantations can increase soil N availability as a result of biological N2 fixation and faster N cycling. Some studies have also shown improved eucalypt P nutrition. However, the effects of N2-fixing trees on P cycling in tropical soils remain poorly understood and site-dependent. Our study aimed to assess the effects of planting A. mangium trees in areas managed over several decades with eucalypt plantations on soil organic P (Po) forms and low molecular weight organic acids (LMWOAs). Soil samples were collected from two tropical sites, one in Brazil and one in the Congo. Five different treatments were sampled at each site: monospecific acacia, monospecific eucalypt, below acacias in mixed-species, below eucalypts in mixed-species as well as native vegetation. Po forms and LMWOAs were identified in sodium hydroxide soil extracts using ion chromatography and relationships between these data and available P were determined. At both sites, the concentrations of most Po forms and LMWOAs were different between native ecosystems and monospecific eucalypt and acacia plots. Also, patterns of Po and LMWOAs were clearly separated, with glucose-6-P found mainly under acacia and phytate and oxalate mainly under eucalypt. Despite the strongest changes occurred at site with a higher N2 fixation and root development, acacia introduction was able to change the profile of organic P and LMWOAs in <10 years. The variations between available Pi, Po and LMWOA forms showed that P cycling was dominated by different processes at each site, that are rather physicochemical (via Pi desorption after LMWOAs release) at Itatinga and biological (via organic P mineralization) at Kissoko. Specific patterns of Po and LMWOAs forms found in soil sampled under acacia or eucalypt would therefore explain the effect of acacia introduction in both sites.


Asunto(s)
Acacia , Árboles , Brasil , Ecosistema , Peso Molecular , Suelo
8.
Mycorrhiza ; 29(6): 637-648, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31732817

RESUMEN

Despite the strong ecological importance of ectomycorrhizal (ECM) fungi, their vertical distribution remains poorly understood. To our knowledge, ECM structures associated with trees have never been reported in depths below 2 meters. In this study, fine roots and ECM root tips were sampled down to 4-m depth during the digging of two independent pits differing by their water availability. A meta-barcoding approach based on Illumina sequencing of internal transcribed spacers (ITS1 and ITS2) was carried out on DNA extracted from root samples (fine roots and ECM root tips separately). ECM fungi dominated the root-associated fungal community, with more than 90% of sequences assigned to the genus Pisolithus. The morphological and barcoding results demonstrated, for the first time, the presence of ECM symbiosis down to 4-m. The molecular diversity of Pisolithus spp. was strongly dependent on depth, with soil pH and soil water content as primary drivers of the Pisolithus spp. structure. Altogether, our results highlight the importance to consider the ECM symbiosis in deep soil layers to improve our understanding of fine roots functioning in tropical soils.


Asunto(s)
Basidiomycota , Micorrizas , Brasil , Raíces de Plantas , Árboles
9.
PLoS One ; 14(6): e0218528, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31220144

RESUMEN

While potassium fertilization increases growth yield in Brazilian eucalyptus plantations, it could also increase water requirements, making trees more vulnerable to drought. Sodium fertilization, which has been shown to promote eucalyptus growth compared to K-deficient trees, could partially mitigate this adverse effect of potassium. However, little is known about the influence of K and Na fertilization on the tree metabolic response to water deficit. The aim of the present study was thus to analyze the transcriptome of leaves sampled from Eucalyptus grandis trees subjected to 37% rainfall reduction, and fertilized with potassium (K), sodium (Na), compared to control trees (C). The multifactorial experiment was set up in a field with a throughfall exclusion system. Transcriptomic analysis was performed on leaves from two-year-old trees, and data analyzed using multifactorial statistical analysis and weighted gene co-expression network analysis (WGCNA). Significant sets of genes were seen to respond to rainfall reduction, in interaction with K or Na fertilization, or to fertilization only (regardless of the water supply regime). The genes were involved in stress signaling, primary and secondary metabolism, secondary cell wall formation and photosynthetic activity. Our focus on key genes related to cation transporters and aquaporins highlighted specific regulation of ion homeostasis, and plant adjustment to water deficit. While water availability significantly affects the transcriptomic response of eucalyptus species, this study points out that the transcriptomic response is highly dependent on the fertilization regime. Our study is based on the first large-scale field trial in a tropical region, specifically designed to study the interaction between water availability and nutrition in eucalyptus. To our knowledge, this is the first global transcriptomic analysis to compare the influence of K and Na fertilization on tree adaptive traits in water deficit conditions.


Asunto(s)
Sequías , Eucalyptus/genética , Fertilizantes , Transcriptoma , Eucalyptus/efectos de los fármacos , Eucalyptus/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Potasio/análisis , Potasio/farmacología , Sodio/análisis , Sodio/farmacología , Suelo/química , Estrés Fisiológico
10.
New Phytol ; 223(2): 766-782, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30887522

RESUMEN

Wood production in fast-growing Eucalyptus grandis trees is highly dependent on both potassium (K) fertilization and water availability but the molecular processes underlying wood formation in response to the combined effects of these two limiting factors remain unknown. E. grandis trees were submitted to four combinations of K-fertilization and water supply. Weighted gene co-expression network analysis and MixOmics-based co-regulation networks were used to integrate xylem transcriptome, metabolome and complex wood traits. Functional characterization of a candidate gene was performed in transgenic E. grandis hairy roots. This integrated network-based approach enabled us to identify meaningful biological processes and regulators impacted by K-fertilization and/or water limitation. It revealed that modules of co-regulated genes and metabolites strongly correlated to wood complex traits are in the heart of a complex trade-off between biomass production and stress responses. Nested in these modules, potential new cell-wall regulators were identified, as further confirmed by the functional characterization of EgMYB137. These findings provide new insights into the regulatory mechanisms of wood formation under stressful conditions, pointing out both known and new regulators co-opted by K-fertilization and/or water limitation that may potentially promote adaptive wood traits.


Asunto(s)
Eucalyptus/crecimiento & desarrollo , Potasio/farmacología , Biología de Sistemas , Árboles/crecimiento & desarrollo , Agua/farmacología , Madera/crecimiento & desarrollo , Biomasa , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Eucalyptus/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Metaboloma/efectos de los fármacos , Fenotipo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma/genética , Árboles/efectos de los fármacos , Madera/efectos de los fármacos , Xilema/efectos de los fármacos , Xilema/genética , Xilema/crecimiento & desarrollo
11.
Microb Ecol ; 78(2): 528-533, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30499007

RESUMEN

Harvest residue management is a key issue for the sustainability of Eucalyptus plantations established on poor soils. Soil microbial communities contribute to soil fertility by the decomposition of the organic matter (OM), but little is known about the effect of whole-tree harvesting (WTH) in comparison to stem only harvesting (SOH) on soil microbial functional diversity in Eucalyptus plantations. We studied the effects of harvest residue management (branches, leaves, bark) of Eucalyptus grandis trees on soil enzymatic activities and community-level physiological profiles in a Brazilian plantation. We measured soil microbial enzymatic activities involved in OM decomposition and we compared the community level physiological profiles (CLPP) of the soil microbes in WTH and SOH plots. WTH decreased enzyme activities and catabolic potential of the soil microbial community. Furthermore, these negative effects on soil functional diversity were mainly observed below the 0-5 cm layer (5-10 and 10-20 cm), suggesting that WTH can be harmful to the soil health in these plantations.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Producción de Cultivos/métodos , Eucalyptus/química , Microbiología del Suelo , Suelo/química , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Proteínas Bacterianas/análisis , Brasil , Eucalyptus/crecimiento & desarrollo , Microbiota , Tallos de la Planta/química
12.
Tree Physiol ; 36(1): 6-21, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26423335

RESUMEN

Potassium (K) is an important limiting factor of tree growth, but little is known of the effects of K supply on the long-distance transport of photosynthetic carbon (C) in the phloem and of the interaction between K fertilization and drought. We pulse-labelled 2-year-old Eucalyptus grandis L. trees grown in a field trial combining K fertilization (+K and -K) and throughfall exclusion (+W and -W), and we estimated the velocity of C transfer by comparing time lags between the uptake of (13)CO2 and its recovery in trunk CO2 efflux recorded at different heights. We also analysed the dynamics of the labelled photosynthates recovered in the foliage and in the phloem sap (inner bark extract). The mean residence time of labelled C in the foliage was short (21-31 h). The time series of (13)C in excess in the foliage was affected by the level of fertilization, whereas the effect of throughfall exclusion was not significant. The velocity of C transfer in the trunk (0.20-0.82 m h(-1)) was twice as high in +K trees than in -K trees, with no significant effect of throughfall exclusion except for one +K -W tree labelled in the middle of the drought season that was exposed to a more pronounced water stress (midday leaf water potential of -2.2 MPa). Our results suggest that besides reductions in photosynthetic C supply and in C demand by sink organs, the lower velocity under K deficiency is due to a lower cross-sectional area of the sieve tubes, whereas an increase in phloem sap viscosity is more likely limiting phloem transport under drought. In all treatments, 10 times less (13)C was recovered in inner bark extracts at the bottom of the trunk when compared with the base of the crown, suggesting that a large part of the labelled assimilates has been exported out of the phloem and replaced by unlabelled C. This supports the 'leakage-retrieval mechanism' that may play a role in maintaining the pressure gradient between source and sink organs required to sustain high velocity of phloem transport in tall trees.


Asunto(s)
Carbono/metabolismo , Eucalyptus/metabolismo , Floema/metabolismo , Fotosíntesis , Potasio/metabolismo , Árboles/metabolismo , Marcadores de Afinidad , Transporte Biológico Activo , Isótopos de Carbono
13.
Glob Chang Biol ; 21(5): 2022-39, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25430918

RESUMEN

Global climate change is expected to increase the length of drought periods in many tropical regions. Although large amounts of potassium (K) are applied in tropical crops and planted forests, little is known about the interaction between K nutrition and water deficit on the physiological mechanisms governing plant growth. A process-based model (MAESPA) parameterized in a split-plot experiment in Brazil was used to gain insight into the combined effects of K deficiency and water deficit on absorbed radiation (aPAR), gross primary productivity (GPP), and light-use efficiency for carbon assimilation and stem biomass production (LUEC and LUEs ) in Eucalyptus grandis plantations. The main-plot factor was the water supply (undisturbed rainfall vs. 37% of throughfall excluded) and the subplot factor was the K supply (with or without 0.45 mol K m(-2 ) K addition). Mean GPP was 28% lower without K addition over the first 3 years after planting whether throughfall was partly excluded or not. K deficiency reduced aPAR by 20% and LUEC by 10% over the whole period of growth. With K addition, throughfall exclusion decreased GPP by 25%, resulting from a 21% decrease in LUEC at the end of the study period. The effect of the combination of K deficiency and water deficit was less severe than the sum of the effects of K deficiency and water deficit individually, leading to a reduction in stem biomass production, gross primary productivity and LUE similar to K deficiency on its own. The modeling approach showed that K nutrition and water deficit influenced absorbed radiation essentially through changes in leaf area index and tree height. The changes in gross primary productivity and light-use efficiency were, however, driven by a more complex set of tree parameters, especially those controlling water uptake by roots and leaf photosynthetic capacities.


Asunto(s)
Cambio Climático , Eucalyptus/crecimiento & desarrollo , Agricultura Forestal/estadística & datos numéricos , Modelos Biológicos , Potasio/metabolismo , Lluvia , Biomasa , Brasil , Sequías , Eucalyptus/metabolismo , Agricultura Forestal/métodos
14.
New Phytol ; 203(2): 401-413, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24725318

RESUMEN

A basic understanding of nutrition effects on the mechanisms involved in tree response to drought is essential under a future drier climate. A large-scale throughfall exclusion experiment was set up in Brazil to gain an insight into the effects of potassium (K) and sodium (Na) nutrition on tree structural and physiological adjustments to water deficit. Regardless of the water supply, K and Na supply greatly increased growth and leaf area index (LAI) of Eucalyptus grandis trees over the first 3 yr after planting. Excluding 37% of throughfall reduced above-ground biomass accumulation in the third year after planting for K- supplied trees only. E. grandis trees were scarcely sensitive to drought as a result of the utilization of water stored in deep soil layers after clear-cutting the previous plantation. Trees coped with water restriction through stomatal closure (isohydrodynamic behavior), osmotic adjustment and decrease in LAI. Additionally, droughted trees showed higher phloem sap sugar concentrations. K and Na supply increased maximum stomatal conductance, and the high water requirements of fertilized trees increased water stress during dry periods. Fertilization regimes should be revisited in a future drier climate in order to find the right balance between improving tree growth and limiting water shortage.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Eucalyptus/fisiología , Potasio/farmacología , Sodio/farmacología , Biomasa , Brasil , Sequías , Eucalyptus/efectos de los fármacos , Eucalyptus/crecimiento & desarrollo , Floema/química , Floema/metabolismo , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Estaciones del Año , Suelo
15.
Plant Cell Environ ; 37(1): 70-81, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23663049

RESUMEN

Although vast areas in tropical regions have weathered soils with low potassium (K) levels, little is known about the effects of K supply on the photosynthetic physiology of trees. This study assessed the effects of K and sodium (Na) supply on the diffusional and biochemical limitations to photosynthesis in Eucalyptus grandis leaves. A field experiment comparing treatments receiving K (+K) or Na (+Na) with a control treatment (C) was set up in a K-deficient soil. The net CO2 assimilation rates were twice as high in +K and 1.6 times higher in +Na than in the C as a result of lower stomatal and mesophyll resistance to CO2 diffusion and higher photosynthetic capacity. The starch content was higher and soluble sugar was lower in +K than in C and +Na, suggesting that K starvation disturbed carbon storage and transport. The specific leaf area, leaf thickness, parenchyma thickness, stomatal size and intercellular air spaces increased in +K and +Na compared to C. Nitrogen and chlorophyll concentrations were also higher in +K and +Na than in C. These results suggest a strong relationship between the K and Na supply to E. grandis trees and the functional and structural limitations to CO2 assimilation rates.


Asunto(s)
Eucalyptus/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Potasio/farmacología , Sodio/farmacología , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Eucalyptus/anatomía & histología , Eucalyptus/fisiología , Células del Mesófilo/fisiología , Nitrógeno/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Transpiración de Plantas/fisiología , Potasio/análisis , Sodio/análisis , Árboles
16.
Front Plant Sci ; 4: 243, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23847645

RESUMEN

Although highly weathered soils cover considerable areas in tropical regions, little is known about exploration by roots in deep soil layers. Intensively managed Eucalyptus plantations are simple forest ecosystems that can provide an insight into the belowground growth strategy of fast-growing tropical trees. Fast exploration of deep soil layers by eucalypt fine roots may contribute to achieving a gross primary production that is among the highest in the world for forests. Soil exploration by fine roots down to a depth of 10 m was studied throughout the complete cycle in Eucalyptus grandis plantations managed in short rotation. Intersects of fine roots, less than 1 mm in diameter, and medium-sized roots, 1-3 mm in diameter, were counted on trench walls in a chronosequence of 1-, 2-, 3.5-, and 6-year-old plantations on a sandy soil, as well as in an adjacent 6-year-old stand growing in a clayey soil. Two soil profiles were studied down to a depth of 10 m in each stand (down to 6 m at ages 1 and 2 years) and 4 soil profiles down to 1.5-3.0 m deep. The root intersects were counted on 224 m(2) of trench walls in 15 pits. Monitoring the soil water content showed that, after clear-cutting, almost all the available water stored down to a depth of 7 m was taken up by tree roots within 1.1 year of planting. The soil space was explored intensively by fine roots down to a depth of 3 m from 1 year after planting, with an increase in anisotropy in the upper layers throughout the rotation. About 60% of fine root intersects were found at a depth of more than 1 m, irrespective of stand age. The root distribution was isotropic in deep soil layers and kriged maps showed fine root clumping. A considerable volume of soil was explored by fine roots in eucalypt plantations on deep tropical soils, which might prevent water and nutrient losses by deep drainage after canopy closure and contribute to maximizing resource uses.

17.
Oecologia ; 172(3): 903-13, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23180423

RESUMEN

The consequences of diversity on belowground processes are still poorly known in tropical forests. The distributions of very fine roots (diameter <1 mm) and fine roots (diameter <3 mm) were studied in a randomized block design close to the harvest age of fast-growing plantations. A replacement series was set up in Brazil with mono-specific Eucalyptus grandis (100E) and Acacia mangium (100A) stands and a mixture with the same stocking density and 50% of each species (50A:50E). The total fine root (FR) biomass down to a depth of 2 m was about 27% higher in 50A:50E than in 100A and 100E. Fine root over-yielding in 50A:50E resulted from a 72 % rise in E. grandis fine root biomass per tree relative to 100E, whereas A. mangium FR biomass per tree was 17% lower than in 100A. Mixing A. mangium with E. grandis trees led to a drop in A. mangium FR biomass in the upper 50 cm of soil relative to 100A, partially balanced by a rise in deep soil layers. Our results highlight similarities in the effects of directional resources on leaf and FR distributions in the mixture, with A. mangium leaves below the E. grandis canopy and a low density of A. mangium fine roots in the resource-rich soil layers relative to monospecific stands. The vertical segregation of resource-absorbing organs did not lead to niche complementarity expected to increase the total biomass production.


Asunto(s)
Acacia , Eucalyptus , Raíces de Plantas , Biomasa
18.
Tree Physiol ; 32(6): 680-95, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22588515

RESUMEN

Introducing nitrogen-fixing tree species in fast-growing eucalypt plantations has the potential to improve soil nitrogen availability compared with eucalypt monocultures. Whether or not the changes in soil nutrient status and stand structure will lead to mixtures that out-yield monocultures depends on the balance between positive interactions and the negative effects of interspecific competition, and on their effect on carbon (C) uptake and partitioning. We used a C budget approach to quantify growth, C uptake and C partitioning in monocultures of Eucalyptus grandis (W. Hill ex Maiden) and Acacia mangium (Willd.) (treatments E100 and A100, respectively), and in a mixture at the same stocking density with the two species at a proportion of 1 : 1 (treatment MS). Allometric relationships established over the whole rotation, and measurements of soil CO(2) efflux and aboveground litterfall for ages 4-6 years after planting were used to estimate aboveground net primary production (ANPP), total belowground carbon flux (TBCF) and gross primary production (GPP). We tested the hypotheses that (i) species differences for wood production between E. grandis and A. mangium monocultures were partly explained by different C partitioning strategies, and (ii) the observed lower wood production in the mixture compared with eucalypt monoculture was mostly explained by a lower partitioning aboveground. At the end of the rotation, total aboveground biomass was lowest in A100 (10.5 kg DM m(-2)), intermediate in MS (12.2 kg DM m(-2)) and highest in E100 (13.9 kg DM m(-2)). The results did not support our first hypothesis of contrasting C partitioning strategies between E. grandis and A. mangium monocultures: the 21% lower growth (ΔB(w)) in A100 compared with E100 was almost entirely explained by a 23% lower GPP, with little or no species difference in ratios such as TBCF/GPP, ANPP/TBCF, ΔB(w)/ANPP and ΔB(w)/GPP. In contrast, the 28% lower ΔB(w) in MS than in E100 was explained both by a 15% lower GPP and by a 15% lower fraction of GPP allocated to wood growth, thus partially supporting our second hypothesis: mixing the two species led to shifts in C allocations from above- to belowground, and from growth to litter production, for both species.


Asunto(s)
Acacia/crecimiento & desarrollo , Carbono/metabolismo , Eucalyptus/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Madera/crecimiento & desarrollo , Acacia/metabolismo , Biomasa , Brasil , Dióxido de Carbono/análisis , Eucalyptus/metabolismo , Agricultura Forestal , Fotosíntesis , Suelo/análisis , Especificidad de la Especie , Árboles/metabolismo , Madera/metabolismo
19.
Tree Physiol ; 32(6): 696-706, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22543478

RESUMEN

Wood production represents a large but variable fraction of gross primary production (GPP) in highly productive Eucalyptus plantations. Assessing patterns of carbon (C) partitioning (C flux as a fraction of GPP) between above- and belowground components is essential to understand mechanisms driving the C budget of these plantations. Better knowledge of fluxes and partitioning to woody and non-woody tissues in response to site characteristics and resource availability could provide opportunities to increase forest productivity. Our study aimed at investigating how C allocation varied within one apparently homogeneous 90 ha stand of Eucalyptus grandis (W. Hill ex Maiden) in Southeastern Brazil. We assessed annual above-ground net primary production (ANPP: stem, leaf, and branch production) and total belowground C flux (TBCF: the sum of root production and respiration and mycorrhizal production and respiration), GPP (computed as the sum of ANPP, TBCF and estimated aboveground respiration) on 12 plots representing the gradient of productivity found within the stand. The spatial heterogeneity of topography and associated soil attributes across the stand likely explained this fertility gradient. Component fluxes of GPP and C partitioning were found to vary among plots. Stem NPP ranged from 554 g C m(-2) year(-1) on the plot with lowest GPP to 923 g C m(-2) year(-1) on the plot with highest GPP. Total belowground carbon flux ranged from 497 to 1235 g C m(-2) year(-1) and showed no relationship with ANPP or GPP. Carbon partitioning to stem NPP increased from 0.19 to 0.23, showing a positive trend of increase with GPP (R(2) = 0.29, P = 0.07). Variations in stem wood production across the gradient of productivity observed at our experimental site were a result of the variability in C partitioning to different forest system components.


Asunto(s)
Biomasa , Carbono/metabolismo , Eucalyptus/metabolismo , Árboles/metabolismo , Madera/crecimiento & desarrollo , Biometría , Brasil , Eucalyptus/crecimiento & desarrollo , Agricultura Forestal , Tallos de la Planta/crecimiento & desarrollo , Árboles/crecimiento & desarrollo
20.
Tree Physiol ; 32(6): 667-79, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22021011

RESUMEN

Understanding the underlying mechanisms that account for the impact of potassium (K) fertilization and its replacement by sodium (Na) on tree growth is key to improving the management of forest plantations that are expanding over weathered tropical soils with low amounts of exchangeable bases. A complete randomized block design was planted with Eucalyptus grandis (W. Hill ex Maiden) to quantify growth, carbon uptake and carbon partitioning using a carbon budget approach. A combination of approaches including the establishment of allometric relationships over the whole rotation and measurements of soil CO(2) efflux and aboveground litterfall at the end of the rotation were used to estimate aboveground net production (ANPP), total belowground carbon flux and gross primary production (GPP). The stable carbon isotope (δ(13)C) of stem wood α-cellulose produced every year was used as a proxy for stomatal limitation of photosynthesis. Potassium fertilization increased GPP and decreased the fraction of carbon allocated belowground. Aboveground net production was strongly enhanced, and because leaf lifespan increased, leaf biomass was enhanced without any change in leaf production, and wood production (P(W)) was dramatically increased. Sodium application decreased the fraction of carbon allocated belowground in a similar way, and enhanced GPP, ANPP and P(W), but to a lesser extent compared with K fertilization. Neither K nor Na affected δ(13)C of stem wood α-cellulose, suggesting that water-use efficiency was the same among the treatments and that the inferred increase in leaf photosynthesis was not only related to a higher stomatal conductance. We concluded that the response to K fertilization and Na addition on P(W) resulted from drastic changes in carbon allocation.


Asunto(s)
Carbono/metabolismo , Eucalyptus/crecimiento & desarrollo , Fertilizantes , Potasio/metabolismo , Sodio/metabolismo , Biomasa , Isótopos de Carbono/metabolismo , Celulosa/metabolismo , Eucalyptus/metabolismo , Agricultura Forestal , Hojas de la Planta/crecimiento & desarrollo , Estomas de Plantas/fisiología , Madera/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...